Real-Time Evolution of the Indium Tin Oxide Film Properties and Structure During Annealing in Vacuum
نویسندگان
چکیده
Indium tin oxide (ITO) is widely applied as a transparent conductive oxide coating. A standard and successful industrial route of production is its deposition by magnetron sputtering from a compound (oxide) target [1]. To increase cost efficiency, it would be preferable to sputter reactively from a metal target at sufficiently high partial pressure of oxygen. However, under this condition, a satisfactorily low resistivity of the films cannot readily be obtained, [2] so that a deposition on heated substrates or post-deposition annealing is necessary. So far, the annealing processes for reactively sputtered ITO [3,4] have only been studied for metal-rich films, in contrast to comprehensive studies after magnetron sputtering from ceramic targets [5-10]. Moreover, mainly isothermal heat treatment is considered in the literature, although annealing using a temperature ramp is of more relevance for practical application. Several investigations report on real-time in situ monitoring of the ITO film resistivity and reflectivity [9,10], which is used for an indirect characterization of the crystalline structure of the films. This approach requires simplifying assumptions on the linear dependence of the resistivity or reflectivity on the crystalline fraction, and the stability of the film roughness during annealing. Direct investigations of the influence of heat treatment on the ITO film structure are so far limited to post-annealing studies by X-ray diffraction (XRD) and scanning or transmission electron microscopy [3-5,7,8,11].
منابع مشابه
Structural Properties of Post Annealed ITO Thin Films at Different Temperatures
Indium tin oxide (ITO) thin films were deposited on glass substrates by RF sputtering using an ITO ceramic target (In2O3-SnO2, 90-10 wt. %). After deposition, samples were annealed at different temperatures in vacuum furnace. The post vacuum annealing effects on the structural, optical and electrical properties of ITO films were investigated. Polycrystalline...
متن کاملThe Effect of Tin Weight Fraction and Annealing Condition on Electrical and Optical Properties of ITO/TiO2 Nanostructured Film
High transparent conductive indium tin oxide/titanium dioxide (ITO/TiO2) nanostructured thin film is prepared by sol-gel dip-coating technique. This method yielded monodisperse ITO nanoparticles with mean diameter of 12 nm. The atomic composition of the Sn within the ITO structure changed from 0-20 wt.%. Through controlled annealing temperature at 550 oC, the result...
متن کاملEnhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates
Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...
متن کاملA Study of ZnO Buffer Layer Effect on Physical Properties of ITO Thin Films Deposited on Different Substrates
The improvement of the physical properties of Indium Tin Oxide (ITO) layers is quite advantageous in photovoltaic applications. In this study the ITO film is deposited by RF sputtering onto p-type crystalline silicon (c-Si) with (100) orientation, multicrystalline silicon (mc-Si), and glass substrates coated with ZnO and annealed in vacuum furnace at 400°C. Electrical, optical, structural a...
متن کاملInvestigation of post-annealing indium tin oxide for future electro-optical device application
-The nanostructure transformation associated with electro-optical properties via post-annealing of indium tin oxide film (ITO) is investigated by increasing post-annealing temperature in ambient oxygen. Although oxygen vacancy and activation Sn ions contribute to conductivity of ITO film, the oxygen vacancy inevitably reduces during posting annealing, but Sn-O related bonds are oppositely incre...
متن کامل